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We consider analytically as well as numerically the finite-size scaling behavior in the stationary state near
the nonequilibrium phase transition of directed percolation within the mean field regime, i.e., above the upper
critical dimension. Analogous to equilibrium, usual finite-size scaling is valid below the upper critical dimen-
sion, whereas it fails above. Performing a momentum analysis of associated path integrals we derive modified
finite-size scaling forms of the order parameter and its higher moments. The results are confirmed by numerical
simulations of corresponding high-dimensional lattice models.
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Critical phenomena such as second order phase transitions
are characterized by singularities causing a discontinuous be-
havior of various quantities at the transition point �e.g., the
specific heat, the susceptibility, and the correlation length�.
These singularities are described by power laws defining the
well-known critical exponents. Studying the phase transition
of a given system, the aim of the investigation is to identify
the set of critical exponents which characterizes �together
with certain universal scaling functions� the so-called univer-
sality class. Since most systems are not analytically tractable
their critical behavior is often investigated via numerical
methods, for example Monte Carlo simulations or transfer
matrix calculations. In these cases, the obtained data are lim-
ited to finite system sizes. Therefore finite-size scaling �FSS�
is widely used to extrapolate to the behavior of the infinite
systems. In particular, FSS is an efficient method to deter-
mine the critical exponents and provides certain universal
scaling functions, i.e., it allows to identify the universality
class �see Refs. �1,2� for reviews�.

According to the phenomenological FSS theory �3�, a fi-
nite system size L results in a rounding and shifting of the
singularities. Furthermore, it is assumed that finite-size ef-
fects are controlled sufficiently close to the critical point by
the ratio L /��. Here, �� denotes the spatial correlation length
of the infinite system. Approaching the transition point, the
correlation length diverges as ��� ��−�c�−�, with the critical
exponent � and where � is a temperaturelike variable which
describes the distance to the critical point. Finite-size effects
are negligible for L��� �i.e., L��−�c���1�. Otherwise, they
are relevant, i.e., rounding and shifting effects occur if L
���. It is known in equilibrium that the hypothesis of the
fundamental role of the ratio L /�� is valid only below the
so-called upper critical dimension dc �see Ref. �4� for a re-
cent review�. Above this marginal dimension, mean field
theories provide exact values of the critical exponents as well
as of the scaling functions. Renormalization group treat-
ments show that the failure of usual FSS within the mean
field regime is related to variables �scaling fields� which be-
come dangerously irrelevant for d�dc �5�. Dangerous

irrelevant variables affect the scaling behavior qualitatively
and furthermore cause the breakdown of hyperscaling laws
which connect the critical exponents to the spatial dimension
d. Investigations of this breakdown of usual finite size scal-
ing trace back to �6�. After controversial discussions �see
e.g., �7� and referenced therein� the problem was recently
resolved �8� and a convincing agreement between numerical
data and field theoretical results in achieved �8,9�.

Compared to the equilibrium situation less is known in
the case of nonequilibrium phase transitions. Therefore we
consider in this work the absorbing phase transition of di-
rected percolation �DP� as an exemplification. According to
its robustness and ubiquity �including critical phenomena in
physics, biology, epidemiology, as well as catalytic chemical
reactions� DP is recognized as the paradigm of nonequilib-
rium phase transitions into absorbing states �see Ref. �10� for
a readable review�. Although an analytical solution is still
lacking, DP plays a comparable role in the realm of nonequi-
librium phase transitions as the Ising model in equilibrium.
Previous investigations of FSS of DP focus to the absorbing
phase below dc, where dc=4 �11�. Here, we are interested in
finite-size properties above dc. In particular, we study the
steady state scaling behavior of finite systems in the active
phase which is maintained by a homogeneous source. Using
a momentum space analysis of path integrals associated to
the field theoretical formulation of DP, we derive FSS expo-
nents and universal scaling functions. Analogous to equilib-
rium, we demonstrate that usual FSS has to be modified in
order to describe the scaling behavior within the mean field
regime. Additional numerical simulations confirm the field
theoretical results. But in contrast to equilibrium we observe
a convincing agreement between the lowest mode finite-size
analysis and corresponding numerical results.

The asymptotic behavior of the DP universality class is
described by a minimal stochastic Markovian process repre-
sented by the Langevin equation �12,13�

	−1�tn = − �� +
g

2
n − �2�n + h + 
 . �1�

Here, the density of an active agent n�r , t�, defined on a
mesoscopic �coarse grained� scale, corresponds to the order
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parameter of the nonequilibrium phase transition. The con-
trol parameter of the transition � attains its critical value in
an infinite volume at �c. The homogeneous source h is con-
jugated to the order parameter and is usually implemented as
a spontaneous creation of activity �see, e.g., Ref. �14��. For
zero h, a finite positive density occurs above the transition
point ����c� whereas the absorbing vacuum state �n=0� is
approached below the transition point. Furthermore, 
�r , t�
denotes the noise which accounts for fluctuations of the den-
sity n�r , t�. This zero-mean Gaussian noise represents fast
degrees of freedom which were eliminated by a suitable
coarse graining procedure. The noise correlator


�r,t�
�r�,t�� = 	−1g�n�r,t���r − r����t − t�� �2�

is dictated by the existence of the absorbing state n=0.
Renormalization group techniques have been applied to

determine the critical exponents and the universal scaling
functions �11–13,15–17�. In that case path integral formula-
tions are more adequate than the Langevin equation ap-
proach �18,19�. Stationary correlation functions as well as
response functions can be determined by calculating path
integrals with weight exp�−J�, where the dynamic functional
J describes the considered stochastic process. The following
dynamic response functional �12,13�

J =� ddr dt 		ñ�	−1�t + �� − �2� +
g

2
�n − ñ��n − hñ


�3�

is associated to the stochastic process defined by Eqs. �1� and
�2�. Here, ñ�r , t� denotes the response field conjugated to the
Langevin noise. Furthermore, the coupling constants g and
g� are equated by an appropriate rescaling with the redundant
parameter, K

ñ�r,t� → K−1ñ�r,t�, n�r,t� → Kn�r,t�, h → Kh . �4�

The functional J is invariant under the time inversion �so-
called rapidity reversal� ñ�r , t�↔−n�r ,−t� for vanishing
�symmetry breaking� source h.

Using standard techniques known from equilibrium �6�, it
is possible to calculate size-dependent universal scaling
functions as well as the involved critical exponents. We con-
sider DP in a finite cubic geometry of linear size L with
periodic boundary conditions and expand n and ñ in complex
exponential plane waves, e.g.,

n�r,t� = �
q

eiq·rn�q,t� . �5�

Each component of the wave vector takes only discrete val-
ues, precisely multiples of 2� /L including zero. Following

Ref. �11�, a dynamic free energy functional ��̃ ,�� for the
q=0 mode is constructed by decomposing the critical ho-

mogenous modes �̃�t� , ��t�, from their orthogonal non-

critical complements �̃�r , t� , ��r , t�, e.g.,

n�r,t� = ��t� + ��r,t� �6�

with ��t�=L−d�dd r n�r , t�. This leads to a decomposition of
the response functional J=J0+J1 with

J0 = 	Ld� dt	�̃�	−1�t + � +
g

2
�� − �̃��� − h�̃
 . �7�

Now, �̃ and � are eliminated by a functional integration

e−��̃,�� = e−J0��̃,�� � D��̃,��e−J1��̃,�;�̃,��. �8�

The part J1 contributes to the leading scaling behavior for
d�dc �11�. This will be revisited in a successional publica-
tion �20�. Here, we consider the mean field regime �d�dc�
where J1 provides, besides the shift of the control parameter
from its mean field value ��c

mf=0� to �c,L=�c,�+O�L2−d��0,
corrections to the leading asymptotic scaling behavior.
Hence we neglect J1 in the following but include the shift of
the critical point to the infinite size value �c=�c,� by the
redefinition �→�−�c. Correlation functions of the order pa-
rameter � , ��=1

k ��t���=Gk��t�� ,� ,h ,Ld ,	 ,g�, can be de-
rived from path integrals with weight exp�−�. In that way,
Eq. �7� and simple dimensional scaling leads to the param-
eter reduction in the correlation function

Gk��t��,�,h,Ld,	,g� = g−kFk��	t��,�,gh,Ld/g2�

= L−kd/2fk��L−d/2g	t��,Ld/2�/g,Ldh/g� .

�9�

Therefore it is convenient to define

��s� = Ld/2��t� and s = gL−d/2	t . �10�

Then Eq. �7� yields

 � J0 =� ds	�̃��s + T +
1

2
�� − �̃��� − H�̃
 , �11�

where the rescaled control parameter and the rescaled source

T = g−1Ld/2� and H = g−1Ldh �12�

are introduced. Note that the whole dynamic functional de-
pends on the rescaled parameters T and H only. Furthermore,
the rescaled parameters contain the irrelevant parameter g in
a dangerous, i.e., singular, way.

The rescaled parameters �Eq. �12�� and Eq. �9� already
contain a nontrivial result: As usual for critical phenomena,
physical quantities of interest are described in terms of gen-
eralized homogenous functions. For example, the steady
state order parameter n= �� and the steady state correlation
length � obey for all l�0 the scaling forms �despite nonuni-
versal metric factors�

n = l�/�*
R̃��l−1/�*

,hl−�/�*
,Ll� , �13�

� = l−1�̃��l−1/�*
,hl−�/�*

,Ll� , �14�

with the universal functions R̃ and �̃ �analogous scaling
functions are known from equilibrium �4,23��. Usual FSS
forms involve the correlation length exponent � whereas the
above modified scaling forms contain the so far unknown
exponent �*. For d�dc, the order parameter exponent � and
the field exponent � �often called gap exponent in equilib-
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rium� equal their mean field values �=1 and �=2. Compar-
ing Eqs. �9� and �12� to the scaling forms Eqs. �13� and �14�
for l=L−1 yields the FSS exponent for periodic boundary
conditions

�* =
2

d
. �15�

Note that �* depends on the spatial dimension in contrast to
the exponents � and �. More important, �* differs from the
known mean field value of the correlation length exponent
�=1/2 for d�dc=4. Thus the FSS forms are not controlled
by the ratio L /���L���� but by L����

*
. This scaling anomaly

occurs within the mean field regime only and is regarded as
breakdown of FSS. Furthermore, it can be interpreted as an
appearance of an additional length scale, termed thermody-
namic length scale l�, which diverges as l�� ���−�*

�4,23�.
Similar to equilibrium, this length scale coincides with ��

below dc, including �=�*. Thus the exponent �* fulfills the
hyperscaling relation �*d=2�+�� in all dimensions.

Additionally to the critical exponent �* is it even possible

to derive universal scaling functions, e.g., R̃�0,x ,1�. The dy-

namic functional Eq. �11� corresponds to the following
Fokker-Planck equation �11�:

�sP��,s� = 	����T +
�

2
�� − H� + ��

2 �

2

P��,s� . �16�

The stationary solution P0���

P0��� = C�2H−1e−�2T+�/2�� �17�

can be normalized by an appropriate finite factor C�H ,T� for
H�0. Straightforward calculations yield the moments at
bulk criticality �T=0�

�k� = 2k/2��H + k/2�/��H� . �18�

Thus the universal FSS functions of the order parameter n
= ��=L−d/2��, of the order parameter fluctuations �n
=Ld��2�− ��2�= �2�− ��2 as well as of the ratios V
= �2� / ��2−1, S=1− �3� / �3���2��, Q=1− �4� /
�3�2�2� are given by

n =� 2

Ld

�� x + 1

2
�

�� x

2
� = L−d/2	�x , x → �

��/2x , x → 0,

 �19�

�n = x − 2

�� x + 1

2
�2

�� x

2
�2 = 	1/2, x → �

x , x → 0,

 �20�

V =

x�� x

2
�2

2�� x + 1

2
�2 − 1 = 	1/2x , x → �

2/�x , x → 0,

 �21�

S =
2

3
�1 −

1

2x
�, Q =

2

3
�1 −

1

x
� , �22�

with the scaling argument x=2H=2hLd /g. In contrast to
equilibrium, the ratios V ,S ,Q are not finite at the critical
point �x→0�. This reflects the different nature of the zero
order parameter phase in equilibrium and in absorbing phase
transitions. A ratio that remains finite at criticality is obtained
via

U�x� =
2 − 3S�x�
2 − 3Q�x�

=
�2��3� − ���2�2

���4� − ���2�2 =
1

2
. �23�

We expect that this ratio is as useful for absorbing phase
transition as the Binder cumulant Q is for equilibrium, i.e.,
its value at criticality characterizes the universality class.
Preliminary numerical investigations below dc yield Ud=1
=0.833,Ud=2=0.704, and Ud=3=0.61 for x→0 �20�.

The order parameter n and the ratio Q are shown in Fig. 1.
Additionally to the above derived universal scaling functions
we plot corresponding simulation results of the five-
dimensional contact process �CP� as well as of the five-

FIG. 1. The universal order parameter scaling function

R̃pbc�0,x ,1� �inset� and the universal fourth order ratio scaling func-

tion Q̃pbc�0,x ,1� as a function of the rescaled field ahh�aLL�d at
criticality for d�dc. The analytically obtained scaling functions are
in perfect agreement with numerical data of the five-dimensional
contact process �CP, implemented on simple cubic lattices of size
L=4, 8, 16, 	c=1.138 46�11�� and of the five-dimensional site-
directed percolation process �sDP, implemented via the Domany-
Kinzel automaton �24� on lattices of a generalized bcc-like structure
�22� of linear size L=8, 16, 32, pc=0.0359 725�2� �25��. Note that
the numerical data already belong to the asymptotic scaling regime.
In the case of the numerical data, nonuniversal metric factors ah and
aL have been introduced in order to norm the universal scaling

functions, i.e., R̃pbc�0,0 ,1�=1 for the order parameter and

Q̃pbc�0,1 ,1�=0 �bold circle� for the ratio Q �see Refs. �21,22� for
details�.

FINITE-SIZE SCALING OF DIRECTED PERCOLATION… PHYSICAL REVIEW E 72, 016119 �2005�

016119-3



dimensional site-directed percolation process �sDP�. Both
models belong to the DP universality class �see Ref. �10� and
references therein�. In contrast to conventional equilibrium
simulation techniques, no steady state finite-size quantities
are available for absorbing phase transitions at zero field.
Close to the transition point, the systems will be soon
trapped in the absorbing state without chance of escape. As
recently pointed out in Ref. �21�, the natural way to circum-
vent these difficulties is to perform simulations in nonzero
field at criticality. Thus both the analytical results as well as
the numerical simulations reflect that well-defined steady
state quantities exist close to the critical point for h�0 only.
As can be seen in Fig. 1, the data of the lattice models obey
the modified FSS forms and the obtained scaling curves are
in perfect agreement with the results of the continuum
theory. A comment is worth making: In order to reach nu-
merically the asymptotic scaling regime, the considered sys-
tem sizes L have to exceed all intrinsic nonuniversal length
scales L0, i.e., L�L0. The convincing agreement between the
numerical and the field theoretical results indicates that L0 is
sufficiently small for the quantities Eqs. �19�–�22�.

In contrast to, e.g., Q�x�, the ratio U exhibits a different
behavior. To be precise, the leading order of U is no longer a
function of the scaling argument x=2hLd /g within the mean
field regime. Therefore nonuniversal corrections to scaling
become dominant. Analytically, nonuniversal corrections to
U=1/2 are obtained by incorporating the shift of the critical
value ��→�−O�L�4−d�/2��. The results are confirmed numeri-
cally and will be published in a forthcoming paper �20�.
Again, if the universal leading order of the order parameter
moments �k� is canceled for ratios such as U, a nonuniver-
sal behavior occurs. Thus U is an appropriate quantity to
investigate the relevance of corrections to scaling for d�dc.
In summary, convincing agreement is observed between the
lowest mode finite-size analysis and corresponding numeri-
cal results. This is in contrast to the situation in equilibrium
where it is known that the simplest lowest mode approach
fails to describe the scaling behavior �8�.
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